In [4]:
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
dates = pd.date_range(''''2023-01-01'''', periods=100)
data = np.random.randn(100).cumsum()
df = pd.DataFrame({''''Date'''': dates, ''''Value'''': data})
plt.figure(figsize=(10, 6))
plt.plot(df[''''Date''''], df[''''Value''''], label=''''Time Series Data'''')
plt.title(''''Time Series Chart'''')
plt.xlabel(''''Date'''')
plt.ylabel(''''Value'''')
plt.legend()
plt.grid(True)
plt.show()
In [5]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
dates = pd.date_range(start=''''2022-01-01'''', end=''''2023-12-31'''', freq=''''B'''') # Business days
np.random.seed(0)
prices = np.random.normal(loc=100, scale=10, size=len(dates))
df = pd.DataFrame({''''price'''': prices}, index=dates)
start_date = ''''2022-06-01''''
end_date = ''''2022-10-05''''
df.loc[start_date:end_date, ''''price''''] = np.nan
df_original = df
df_ffill = df_original.copy()
df_ffill = df_ffill.ffill()
df_bfill = df_original.copy()
df_bfill = df_bfill.bfill()
df_interp = df_original.copy()
df_interp = df_interp.interpolate(method=''''spline'''', order=1)
df_drop = df_original.copy()
df_drop = df_drop.fillna(20)
In [6]:
fig, axes = plt.subplots(nrows=5, ncols=1, figsize=(14, 16), sharex=True)
axes[0].plot(df_original.index, df_original[''''price''''], label=''''Original'''', color=''''blue'''', linestyle=''''--'''')
axes[0].set_title(''''Original Data'''')
axes[0].legend()
axes[1].plot(df_ffill.index, df_ffill[''''price''''], label=''''Forward Fill'''', color=''''green'''')
axes[1].set_title(''''Forward Fill'''')
axes[1].legend()
axes[2].plot(df_bfill.index, df_bfill[''''price''''], label=''''Backward Fill'''', color=''''red'''')
axes[2].set_title(''''Backward Fill'''')
axes[2].legend()
axes[3].plot(df_interp.index, df_interp[''''price''''], label=''''Interpolation'''', color=''''purple'''')
axes[3].set_title(''''Interpolation'''')
axes[3].legend()
axes[4].plot(df_drop.index, df_drop[''''price''''], label=''''fillna'''', color=''''purple'''')
axes[4].set_title(''''fillna'''')
axes[4].legend()
plt.xlabel(''''Date'''')
plt.ylabel(''''Price'''')
plt.tight_layout()
plt.show()